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nonlinearity and cubic-quintic nonlinearities
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We present an analytic study on solitons in a nonlocal nonlinear medium. There are three types of competing nonlinearities
that are taken into account in our model. They are weakly nonlocal nonlinearity, cubic nonlinearity and quintic nonlinearity.
By means of the Lie symmetry analysis, we report the bright and dark solitons and their respective existence conditions.
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1. Introduction

Nonlocality of nonlinearity, including weak
nonlocality, general nonlocality and strong nonlocality,
exists in fluid mechanics, condensed matter physics,
particle physics, nonlinear optics and several other fields
[1-5]. In the past two decades, the nonlinear dynamics of
nonlocal solitons were intensively investigated, and
many integration tools were proposed to extract soliton
solutions to the well-known nonlocal nonlinear
Schrodinger equation (NNLSE), which models the
propagation of solitons through nonlocal nonlinear
systems [1-10].

Recently, soliton dynamics in an artificial synthetic
nonlocal material with competing nonlinearities in
which the nonlinear response of medium is the result of
interaction between nonlocal nonlinearity and other
nonlinear effects has attracted many attentions. The
properties of dark solitons under competing generally
nonlocal nonlinearity and local cubic nonlinearity or
(and) quintic nonlinearity have been studied [11-41].

Under investigation in this work is the NNLSE with
competing weakly nonlocal nonlinearity and parabolic
law nonlinearity
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where U(X,t) is the slowly varying amplitude, while X

and t are dimensionless transverse and propagation
coordinates.

In Eq. (1), the first term gives the linear evolution,
while the second term represents diffraction and finally

the last three terms that are weakly nonlocal nonlinearity,
cubic nonlinearity and quintic nonlinearity are due to
competing nonlinearities. It should be noted that, in our
previous studies, we performed four algorithms including
traveling wave hypothesis, Jacobian elliptic equation
expansion method, ansatz approach and Riccati
equation expansion technique to integrate Eg. (1), and
discussed the dynamic behaviors of solitons [16-18]. In
present work, a different integration tool that is the Lie
group analysis will be employed to extract solitons to Eq.

().

2. Lie symmetry analysis

In this section, we will study Eq. (1) by Lie symmetry
method.

In order to get our aim, we first use the following
transformation:

u(x,t) = v(x,t)e'*™ @)

Substituting Eq. (2) into Eg. (1), and then separating the
real and imaginary parts, one gets

v, +2av,p, =0 @)

—Vg, +2av, —ave? + 2bw? @
+2bviv, +cv: + v° =0

Considering the following vector fields:
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and applying the second prolongation to Egs. (3) and (4)
yields

T=0C,4 (6)
E=ct+c, @)
n=0 ®)
_GX ;
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Then, we get the Lie point symmetry generators

V, =0, (10)
V, =9, (11)
V, =to, + 2—’;a¢, (12)
V, =0, (13)

and the corresponding groups

0,: (X+&t,v,p) (14)

g,:(xt+e&,Vv,p) (15)

g3:(t€+x,t,v,i(p+g0) (16)
2a

g, (XtVv,p+¢) (17)

These imply that if f(Xx,t) and h(x,t) are the
solutions to Egs. (3) and (4), we have

v, = fi(x—g,t) (18-1)
@ =h(x—egt) (18-2)
v, = f(t—&,X) (19-1)
@, =h(t—¢Xx) (19-2)

v, = fi(x—te,t) (20-1)

o, :2—);.5h3(x—tg,t) th(x—tet)  (202)

v, = f,(t,Xx) (21-1)

@, =h,t,x)—¢ (21-2)

Therefore, if we get the explicit solutions of V(X,t)

and @(X,t), then one can obtain the explicit solutions to

Eqg. (1) by using Eg. (2). Based on the Ref. [16], one can get
many new solutions to Eq. (1).

Case 1: Ref. [16] gives the bright soliton to Eq. (1) in
the form

u(x,t) = Asech[B(x —mt)Je' > (22)
and then one can get new bright solitons using g,
u(x,t) = Asech[B(x — & — mt)Je'l - a)*et+dl (93)

Case 2: Ref. [16] gives the dark soliton to Eq. (1) in the
form

u(xt) = Atanh[ B(x —mt)]e'** 9 (24)
and then one can get new dark soliton using g,
U(X,t) =A tanh[ B(X —&— mt)]ei[*K(Xfa)HuHG] (25)

Case 3: Ref. [16] gives the singular solitons to Eq. (1)
in the form

u(x,t) = A coth[ B(x — mt)Je'™>+**9  (26)
u(x,t) = Acsch[B(x —mt)Je' > (27

and then one can get new singular solitons using g,
u(x,t) = Acoth[ B(x — & —mt)Je'l **-)*t+01(2g)
u(x,t) = Acsch[B(x — & —mt)Je' **~-)*+e1 (29)

where A, B and m are given in Ref. [16].

It is clear that if we choose any &, one can get many
new soliton solutions. Also, we can also get new solitons to
Eg. (1) using other group via Ref. [16]. Here, we do not
explain them. Consequently, we generalized the results in
Ref. [16].
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Finally, we discuss a special case, i.e. if we assume
that u(x,t) = v(x)e ", Eq. (1) becomes to

AV +av, +2bw’
(30)
+2bviv, +ovi + v’ =0

Then, we can get the explicit solutions to Eq. (1) as
follows:
Dark soliton

u(x,t) = C, tanh(C,x + C,)e ' ¢>-9Ct (31

2% 2 2

with a=w and d =—&§b.
2C C:

Singular periodic solution

—li(4c§b—c)c§t

u(x,t) =C, sec(C,x+C,)e 2 (32)

(4C2b —c)C? i d __6Chb

2C? C2

Jacobian sine elliptic periodic traveling wave
solution

with a =

u(x,t) =C; sn(C,x+C,,C))

_iscfc§a+3cfc§a+cg‘df (33)
%@ 3c2 )
2
with b= —% and
6C2C’
. _6C/Cla+2CiCid +2Cid
3C2C? '

Remark 1: In  Egs. (28)-(30), C;

(1=1,2,3,4,5) are real constants. In particular,

letting modulus C, =1in Eq. (30), one gets the explicit
dark soliton to Eq. (1) in the form

u(x,t) = C, tanh(C,x+C,)
r 3CZa+3C2a+Cad ‘ (34)
xe 8

Remark 2: In this paper, we only consider the
transformation U(X,t) = v(x,t)e"”™" . In the future

studies, we will consider other transformation in future
work, such as U =V +1¢ and so on.

3. Conclusion

The nonlinear dynamical model (i.e. Eg. (1)) that
describes the optical solitons propagate in a nonlinear
medium with competing weakly nonlocal nonlinearity, cubic
nonlinearity and quintic nonlinearity is investigated
analytically. Via the Lie group analysis, some new bright,
dark and singular solitons are derived. In addition, the
explicit singular periodic solution and Jacobian sine elliptic
periodic traveling wave solution are reported. It noted that if
we take the modulus C =1, the sine periodic wave will

degenerate to dark soliton.
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