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We present an analytic study on solitons in a nonlocal nonlinear medium. There are three types of competing nonlinearities 
that are taken into account in our model. They are weakly nonlocal nonlinearity, cubic nonlinearity and quintic nonlinearity. 
By means of the Lie symmetry analysis, we report the bright and dark solitons and their respective existence conditions. 
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1. Introduction 
 

Nonlocality of nonlinearity, including weak 

nonlocality, general nonlocality and strong nonlocality, 

exists in fluid mechanics, condensed matter physics, 

particle physics, nonlinear optics and several other fields 

[1-5]. In the past two decades, the nonlinear dynamics of 

nonlocal solitons were intensively investigated, and 

many integration tools were proposed to extract soliton 

solutions to the well-known nonlocal nonlinear 

Schrödinger equation (NNLSE), which models the 

propagation of solitons through nonlocal nonlinear 

systems [1-10].  

Recently, soliton dynamics in an artificial synthetic 

nonlocal material with competing nonlinearities in 

which the nonlinear response of medium is the result of 

interaction between nonlocal nonlinearity and other 

nonlinear effects has attracted many attentions. The 

properties of dark solitons under competing generally 

nonlocal nonlinearity and local cubic nonlinearity or 

(and) quintic nonlinearity have been studied [11-41]. 

Under investigation in this work is the NNLSE with 

competing weakly nonlocal nonlinearity and parabolic 

law nonlinearity 
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where ),( txu  is the slowly varying amplitude, while x  

and t  are dimensionless transverse and propagation 

coordinates.  

In Eq. (1), the first term gives the linear evolution, 

while the second term represents diffraction and finally 

the last three terms that are weakly nonlocal nonlinearity, 

cubic nonlinearity and quintic nonlinearity are due to 

competing nonlinearities. It should be noted that, in our 

previous studies, we performed four algorithms including 

traveling wave hypothesis, Jacobian elliptic equation 

expansion method, ansatz approach and Riccati 

equation expansion technique to integrate Eq. (1), and 

discussed the dynamic behaviors of solitons [16-18]. In 

present work, a different integration tool that is the Lie 

group analysis will be employed to extract solitons to Eq. 

(1).  

 

 

2. Lie symmetry analysis 
 

In this section, we will study Eq. (1) by Lie symmetry 

method. 

In order to get our aim, we first use the following 

transformation:   

 
),(),(),( txietxvtxu                         (2) 

 
Substituting Eq. (2) into Eq. (1), and then separating the 

real and imaginary parts, one gets 
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Considering the following vector fields:  
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and applying the second prolongation to Eqs. (3) and (4) 

yields  
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Then, we get the Lie point symmetry generators  
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and the corresponding groups 
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These imply that if ),( txf  and ),( txh  are the 

solutions to Eqs. (3) and (4), we have 

 

),(11 txfv                       (18-1) 

 

),(11 txh                         (18-2) 
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Therefore, if we get the explicit solutions of ),( txv  

and ),( tx , then one can obtain the explicit solutions to 

Eq. (1) by using Eq. (2). Based on the Ref. [16], one can get 

many new solutions to Eq. (1).  

Case 1: Ref. [16] gives the bright soliton to Eq. (1) in 

the form  

 
)()](sech[),(   txiemtxBAtxu      (22) 

 

and then one can get new bright solitons using 1g  

 
])([)](sech[),(   txiemtxBAtxu    (23) 

 
Case 2: Ref. [16] gives the dark soliton to Eq. (1) in the 

form  

 
)()](tanh[),(   txiemtxBAtxu      (24) 

 

and then one can get new dark soliton using 1g  

 
])([)](tanh[),(   txiemtxBAtxu   (25) 

 
Case 3: Ref. [16] gives the singular solitons to Eq. (1) 

in the form  

 
)()](coth[),(   txiemtxBAtxu         (26) 

 
)()](csch[),(   txiemtxBAtxu        (27) 

 

and then one can get new singular solitons using 1g  

 
])([)](coth[),(   txiemtxBAtxu   (28) 

 
])([)](csch[),(   txiemtxBAtxu   (29) 

 
where A , B  and m  are given in Ref. [16].  

It is clear that if we choose any  , one can get many 

new soliton solutions. Also, we can also get new solitons to 

Eq. (1) using other group via Ref. [16]. Here, we do not 

explain them. Consequently, we generalized the results in 

Ref. [16].  
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Finally, we discuss a special case, i.e. if we assume 

that 
tiexvtxu  )(),( , Eq. (1) becomes to            
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Then, we can get the explicit solutions to Eq. (1) as 

follows:  

Dark soliton 
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Singular periodic solution 
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Jacobian sine elliptic periodic traveling wave 

solution 

t
C

dCaCCaCC
i

e

CCxCCtxu

2
1

4
5

2
3

2
1

2
3

4
1

3

33

1235 ),(sn),(








              (33) 

 

with 
2

3

2

1

2

5

6 CC

dC
b   and 

2

5

2

1

4

5

2

5

2

1

2

3

4

2

3

226

CC

dCdCCaCC
c


 .  

Remark 1: In Eqs. (28)-(30), iC  

( 5,4,3,2,1i ) are real constants. In particular, 

letting modulus 11 C in Eq. (30), one gets the explicit 

dark soliton to Eq. (1) in the form 
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Remark 2: In this paper, we only consider the 

transformation 
),(),(),( txietxvtxu  . In the future 

studies, we will consider other transformation in future 

work, such as ivu   and so on.  

 
 
 
 

3. Conclusion 
 

The nonlinear dynamical model (i.e. Eq. (1)) that 

describes the optical solitons propagate in a nonlinear 

medium with competing weakly nonlocal nonlinearity, cubic 

nonlinearity and quintic nonlinearity is investigated 

analytically. Via the Lie group analysis, some new bright, 

dark and singular solitons are derived. In addition, the 

explicit singular periodic solution and Jacobian sine elliptic 

periodic traveling wave solution are reported. It noted that if 

we take the modulus 11 C , the sine periodic wave will 

degenerate to dark soliton.  

 

 

Acknowledgments 

 

This work was supported by the Program for 

Outstanding Young and Middle-aged Scientific and 

Technological Innovation Team of the Higher Education 

Institutions of Hubei Province of China under the grant 

number T201525.  

 
 
References 

 

  [1] Q. Zhou, D. Yao, X. Liu, S. Ding, Y. Zhang, F. Chen,  

        Opt. Laser Technol. 51, 32 (2013).  

  [2] W. Królikowski, O. Bang, Phys. Rev. E 63, 016610  

        (2000).  

  [3] W. Krolikowski, O. Bang, J. J. Rasmussen, J. Wyller,  

        Phys. Rev. E 64, 016612 (2001).  

 [4] J. Wyller, W. Krolikowski, O. Bang, J. J. Rasmussen,  

       Phys. Rev. E 66, 066615 (2002).  

  [5] W. P. Zhong, L. Yi, R. H. Xie, M. Belić, G. Chen, J.  

        Phys. B: At., Mol. Opt. Phys. 41 025402 (2008).  

  [6] Q. Zhou, L. Liu, H. Zhang, M. Mirzazadeh, A. H.  

        Bhrawy, E. Zerrad, S. Moshokoa, A. Biswas, Opt.  

        Appl. 46(1), 79 (2016).  

  [7] W. Zhong, W, L. Yi, Phys. Rev. A 75, 061801 (2007).  

  [8] D. Mihalache, Proc. Romanian Acad. A 16, 62 (2015).  

  [9] Y. Y. Lin, R. K. Lee, Opt. Express 15, 8781 (2007).  

[10] Q. Guo, B. Luo, F. Yi, S. Chi, Y. Xie, Phys. Rev. E 69,  

        7554 (2004).  

[11] L. Chen, O. Wang, M. Shen, H. Zhao, Y. Y. Lin, C. C.  

        Jeng, R. K. Lee, W. Krolikowski, Opt. Lett. 38, 13  

        (2013).  

[12] M. Shen, D. Wu, H. Zhao, B. Li, J. Phys. B: At. Mol.  

       Opt. Phys. 47, 155401 (2014).  

[13] D. Mihalache, D. Mazilu, F. Lederer, L. C. Crasovan,  

        Y. V. Kartashov, L. Torner, B. A. Phys. Rev. E 74,  

        066614 (2006).  

[14] D. Mihalache, Rom. J. Phys. 57, 352 (2012).  

[15] D. J. Frantzeskakis, H. Leblond, D. Mihalache, Rom. J.  

        Phys. 59, 767 (2014). 

[16] Q. Zhou, Q. Zhu, M. Savescu, A. Bhrawy, A. Biswas,  

        Proc. Rom. Acad. Ser. A 16, 152 (2015).  

[17] H. Leblond, P. Grelu, D. Mihalache, Phys. Rev. A 90,  

        053816 (2014). 

[18] Q. Zhou, Q. Zhu, J. Mod. Opt. 61, 1465 (2014).  

[19] Q. Zhou, Q. Zhu, Y. Liu, P. Yao, A. H. Bhrawy, L.  



810                                                    Gangwei Wang, Mohammad Mirzazadeh, Min Yao, Qin Zhou 

 

        Moraru, A. Biswas, Optoelectron. Adv. Mat.  

        8(9-10), 837 (2014).  

[20] Q. Zhou, D. Yao, S. Ding, Y. Zhang, F. Chen,  

        F. Chen, X. Liu, Optik 124, 5683 (2013).  

[21] C. Q. Dai, Y. J. Xu, Appl. Math. Model. 39, 7420  

        (2015).   

[22] C. Q. Dai, Y. Wang, J. Liu, Nonlinear Dyn. 84,  

        1157 (2016). 

[23] R. Guo, H. Q. Hao, Annals of Physics 344, 10  

        (2014). 

[24] R. Guo, H. Q. Hao, L. L. Zhang, Nonlinear  

        Dynamics 74, 701 (2013). 

[25] R. Guo, H. Q. Hao, Commun Nonlinear Sci.  

        Numer. Simulat. 18, 2426 (2013) 

[26] X. Lü, Nonlinear Dyn. 81, 239 (2015).  

[27] X. Lü, F. Lin, F. Qi, Appl. Math. Modell. 39, 3221  

        (2015).  

[28] W. Liu, L. Huang, P. Huang, Y. Li, M. Lei, Appl.  

        Math. Lett. 61, 80 (2016). 

[29] W. J. Liu L. H. Pang, P. Wong, M. Lei, Z. Y. Wei,  

        Laser Phys. 25(6), 065401 (2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[30] A. M. Wazwaz, S. A. El-Tantawy, Nonlinear Dyn.  

       84, 1107 (2016).  

[31] Q. Zhou, Q. Zhu, H. Yu, X. Xiong, Nonlinear Dyn.  

        80, 983 (2015). 

[32] Q. Zhou, Q. Zhu, Y. Liu, H. Yu, P. Yao, A. Biswas, 

        Laser Phys. 25, 015402 (2015).  

[33] Q. Zhou, L. Liu, Y. Liu, H. Yu, P. Yao, C. Wei,  

        H. Zhang, Nonlinear Dyn. 80, 1365 (2015). 

[34] Q. Zhou, Y. Zhong, M. Mirzazadeh, A. H. Bhrawy, E.  

        Zerrad, A. Biswas, Waves in Random and Complex  

        Media 26, 204 (2016).  

[35] Q. Zhou, S. Liu, Nonlinear Dyn. 81, 733 (2015). 

[36] Q. Zhou, M. Ekici, A. Sonmezoglu, M. Mirzazadeh, M. 

Eslami, Nonlinear Dyn. 84, 1883 (2016).  

[37] Q. Zhou, Nonlinear Dyn. 84, 677 (2016). 

[38] Q. Zhou, M. Mirzazadeh, M. Ekici, A. Sonmezoglu,  

        Nonlinear Dyn. 86, 623 (2016).  

[39] R. Guo, H. Q. Hao, L. L. Zhang, Nonlinear Dyn. 74,  

        701 (2013). 

[40] R. Guo, H. Q. Hao, Ann. Phys. 344, 10 (2014) 

[41] H. H. Zhao, X. J. Zhao, H. Q. Hao, Appl. Math. Lett. 61,  

        8 (2016).  

 

 
________________________ 
*Corresponding author: qinzhou@whu.edu.cn 

 


